The Anatomy of Coluber radiatus and Coluber melanurus

R. A. M. Bergman ${ }^{1}$

Coluber radiatus is a well-known snake in Java. However, we found only 43 of these in a total of nearly 6,000 snakes collected over a number of years before and after World War II in the north coast of Java. Looking at the small number of Coluber radiatus in our catches, one may get the impression that it may be much less common than was generally thought.

The name radiatus is explained by Schlegel (1837: 135) as referring to the very typical black stripes on the head and on the sides of the body:

L'occiput est marqué d'une raie transversale noire et un peu en croissant, à laquelle se joignent de chaque côté une raie plus étroite provenant de l'oeil: deux autres, naissant également sur les bords de cet organe descendent sur les lèvres. Le dos est orné de deux larges raies noires longitudinales; une autre plus étroite règne le long des flancs....

The popular name in Java is "ular tikus," meaning the snake (that hunts the) rats, and it is a very apt name, as this snake is indeed a predator on rats and mice and as such is a very useful animal. It is incredibly swift in its movements: we had a C. radiatus in a rather small cage, about 100 cm . long and 80 cm . wide and deep, and a rat was put into it. For the first minutes nothing happened, but all of a sudden the snake moved and, in a matter of a few seconds, it caught the rat in a coil, crushing it to death. The whole attack happened so quickly that it was difficult to follow the series of movements involved. This snake is not poisonous and is in no way harmful to man, but it is aggressive, it strikes and bites easily. Sometimes it takes a remarkable attitude more of defense than of attack, as is described by van Heurn (1929), who gives the following details: the first third of the body is bent in a U that points laterally, the

[^0]head is directed forward towards the enemy, the mouth is wide open. The neck is compressed laterally, contrary to the manner of cobras. The author illustrates his article with a clear drawing.
materials and methods: Our material consists of 43 snakes, 28 from Surabaia (8 females, 20 males), and 15 from Djakarta (5 females, 9 males, one new-born animal that has not been sexed). Kopstein (1941) measured the length of the body and that of the tail in 15 females and 16 males. In our series we took each animal that was offered, without attempting a selection. The snakes were killed by occipital puncture, weighed, perfused through the aorta with saline followed by Bouins liquid for hardening, and then the distances from the snout to the top and to the end of each organ were measured. For statistical analysis the work of Simpson and Roe (1939) has been followed.
pathology: Infestation with round worms was fairly common. Two males (body length 1249 and 1252 mm .) were wounded, the first one at about one-third of its length behind the head, the other one close behind the head.
blood: The blood of a female (body length 1156 mm .) was analysed in the laboratory of Prof. Radsma. The following results were obtained: $\mathrm{Na} 509, \mathrm{~K} 18.8, \mathrm{Ca} 17.2$, where the figures represent the number of mgs . per 100 ml. of plasma.
sIze: The maximum lengths observed by various authors are summarized, together with our data, in Table 1.

In our material combined with the data gathered by Kopstein, the female group includes six very young animals, hardly more than new-born ones, as against a single very small one in the male group. To make both groups more comparable, the five shortest females are not included in the data used for Figure 1.

For our reasoning it does not make much difference whether we include them or leave

FIG. 1. Body lengths, male and female specimens.
them out, because, in any event, the point of intersection between the first steep part of the curve and the plateau is to be found at a length of about 950 mm . The curve does not suggest a sexual dimorphism in body length.
seX ratio: It is always a difficult question whether the findings on a small group can be used in a more general way. In the case of the sex ratio in C. radiatus, there are three independent observations, each one on a small group, but all pointing in the same direction. In Table 2 the figures of Kopstein (1938) and those of our material from Surabaia and Djakarta are shown.

These figures are very suggestive of a sex ratio of two males to one female. However, in 1941 Kopstein published a list of measurements on 16 males and 15 females, those of 1938 included. This may signify that a few years more of collecting can change the first impression. On the other hand Kopstein, when collecting, has not included in his method the factor of

TABLE 1
Coluber radiatus, LENGTH OF BODY AND OF TAIL

AUTHOR	MALES		FEMALES		SEX UNKNOWN	
	Body	Tail	Body	Tail	Body	Tail
de Rooy.					1280	330
Smith.....	1520	370	1445	350		
Kopstein.	1267	(293)*	1218	(308)		
Bergman.	1380	(311)	1352	308		

[^1]TABLE 2
Coluber radiatus, SEX Ratio

AUTHOR	MALES	$\begin{aligned} & \text { FE- } \\ & \text { MALES } \end{aligned}$	TOTAL
Kopstein 1938............	9	6	15
Bergman Surabaia.........	9	5	14
Bergman Djakarta........	20	8	28
Totals..	38	19	57

not-selecting as a conditio sine qua non, and it seems probable that his first figure is more the result of a random sample than the second one. But even when we take Kopstein's later figures, there is a greater number of males, still in the order of two males to one female.
maturity: In our small series, the shortest female carrying growing eggs (which are 6 mm . in length) has a body length of 1006 mm . As we saw in the curve of successive body lengths (Fig. 1), the intersection of the ascent and the plateau is at about 950 mm . body length. We will not be very far from the real value when we take this figure as the lower limit of the adult size for both sexes.

BODY LENGTH: When all animals are taken together, the average figure for the length of the body is 1096 mm . in males, 898 mm . in females. However, we have already noted that there is an excess of five new-born animals in the female group, which, in a total of 28 animals, makes the average figure too low. If these five females are removed from the series, the average length for the females would be 1018 mm . Taking the adults alone (in this case the animals with a body length longer than 950 mm .), the average length for 38 males is close to 1170 mm ., and for 16 females is 1178 mm ., which is practically the same figure. It can be

TABLE 3
Coluber radiatus, MUTILATION of the Tail

	TAIL		
	Whole	Mutilated	Totals
Males..................	35	10	45
Females................	24	4	28
Total..............	59	14	73

TABLE $3 a$
Coluber radiatus, MUTILATION OF the Tail

	WHOLE	MUTI- LATED	TOTALS
Young.................	17	2	19
Adult..................	42	12	54
Total....................	59	14	73

concluded, therefore, that there is no suggestion of sexual dimorphism in body length.
tail: For a fighting species the number of broken tails does not seem excessively high: 14 in a total of 73 . The figures for both sexes are given in Table 3. One might ask whether the males show more mutilated tails than do the females, or whether it is the other way round, or perhaps whether there is no difference at all.

For the data shown here, χ^{2} is very small, and the deviation from the hypothesis of independency is very probably due to chance. In other words, there is no association between frequency of mutilation and sex.

If we should take the young animals of both sexes together and, similarly, the older ones of both sexes, and divide these into groups of mutilated and of nonmutilated individuals, then Table $3 a$ will show these new figures. $\chi^{2}=$ 1.24 , and it is not possible to see here an association between the length of life and the number of casualties.

The length of the tail and the body for nonmutilated animals is given in Table 4, and the illustration in Figure 2.

In both sexes the relative length of the tail

TABLE 4
Coluber radiatus, LengTh of Body and of Tail

	AVERAGE LENGTH OF THE:			
	N	Body	Tail	Tail length in 0 body of body length
Males, juv..........	6	658	165	250
adult..........	28	1155	288	252
Female, juv.......	6	640	153	239
adult...........	13	1170	281	240

TABLE 5
Coluber radiatus, the Length of the Tail IN \% OF THE Body LENGTH

	N	R	$\mathrm{M} \pm \sigma_{\mathrm{n}}$	$\frac{\sigma \pm \sigma \sigma}{}$	$\mathrm{V} \pm \sigma_{\mathrm{v}}$
Males	28	$230-286$	251.3 ± 2.3	12.3 ± 1.6	4.9 ± 0.7
Females	13	$222-268$	240.0 ± 3.4	12.2 ± 2.4	5.1 ± 1.0

is the same in both the group of young and that of the adult animals.

Between the sexes there is a difference which is small but which may well be real: $\mathrm{D} / \sigma_{\mathrm{D}}$ is 2.76. The hypothesis that there is a sexual dimorphism in the length of the tail seems more probable than the alternative.

FERTILITY: Kopstein (1941) reports the observation of van Heurn, who saw 8 eggs in one nest, and adds an observation of his own upon a nest with 10 eggs. Smith (1943) mentions from 5 to 12 eggs laid at a time. In our material, four animals carried mature eggs in the uterus or in the ovaries. The figures are summarized in Table 6.

The average number of eggs per female is about 7 , with 5 of them on the right side and 2 on the left.

TOPOGRAPHY: Data on the topographical pattern of the organs are available for 27 male adult animals with an average body length of 1196 mm ., and for 9 adult females with an average body length of 1200 mm .

In this case it is already apparent from the average figures that all of the organs are situated more cranially in the female than in the males,

Fig. 2. Body lengths as related to tail lengths.

TABLE 6
Coluber radiatus, NuMBER OF EGGS

BODY LENGTH IN MM.	NUMBER OF EGGS		
	Right	Left	Total
1074...................	6	3	9
1287...................	5	2	7
1332..................	4	3	7
1352...................	6	-	6
Total $n=4 \ldots \ldots \ldots$	21	8	29
v. Heurn..............			8
Kopstein.............-.			10
Smith..................			5
Smith			12
Total $\mathrm{n}=8$.			64

except for the kidneys and the caudal pole of the left ovary, which are situated more caudally in the female. However, to make possible a comparison with other snakes, a table containing the percentile values has been added.
lengths: The lengths of the organs are of the same order in both sexes, except for the gonads: the ovaries are twice as long as the testes. There is some asymmetry: in both sexes the gonads as well as the kidneys are longer on the right side than on the left.
intervals: The intervals between the organs are of the same order in both sexes; in the cranial half of the body they are somewhat greater in the male. In the caudal half the figures are a little higher in the female on the left side. On the right side it is especially B_{2}, the space between the right gonad and the right kidney, which is greater in females ($\mathrm{D} / \sigma_{\mathrm{D}}=$ 4). This is due to the fact that the top of the right kidney is more caudally placed in the female (Tables 8, 9). The total amount of free space on both sides is the same in both sexes. However, if we count only the space from the pancreas to the kidney (D_{R}) on the right side and to that (D_{L}) on the left side, this region, where the eggs will develop, is greater in females than is the corresponding area in the males, amounting to a difference of about 27 per cent on the right side and 15 per cent on the left.
variability: The coefficient of variability (V) is low for all topographical data: it is about 7 in the male series and about 12 in the female.

In the case of the length of the organs, this coefficient is high for the length of the spleen in both sexes and for the length of the gonads

TABLE 7
Coluber radiatus, of ADULTS ($>950 \mathrm{~mm}$.), TOPOGRAPHY

	N	R	$\mathrm{M} \pm \sigma_{m}$	$\sigma \pm \sigma \sigma$	$\mathrm{V} \pm \mathrm{ov}^{\text {V }}$
Body...	38	957-1380	1170.0 ± 15.2	94.0 ± 10.8	8.0 ± 0.9
Tail	28	237-351	287.9 ± 4.7	24.6 ± 3.3	8.5 ± 1.1
Heart, top	27	199-264	241.2 ± 2.9	14.8 ± 2.0	6.1 ± 0.8
end.	27	231-302	276.8 ± 3.2	16.9 ± 2.3	6.1 ± 0.8
Liver, to	27	286-383	364.3 ± 4.9	25.2 ± 3.4	6.9 ± 0.9
end.	27	471-653	580.9 ± 7.2	37.7 ± 5.1	6.5 ± 0.9
Gallbladder, top	27	579-832	708.2 ± 10.1	52.8 ± 7.2	7.5 ± 1.0
end.	27	603-859	737.0 ± 10.0	52.3 ± 7.1	7.1 ± 1.0
Pancreas, top	27	604-856	734.2 ± 11.2	58.3 ± 7.9	7.9 ± 1.1
end.........	27	620-872	751.4 ± 10.2	53.0 ± 7.2	7.1 ± 1.0
Spleen, top	27	601-850	734.2 ± 8.8	53.3 ± 7.2	7.3 ± 1.0
end.	27	605-857	737.0 ± 10.2	53.1 ± 7.2	7.2 ± 1.0
Sex R, top.	27	688-993	853.6 ± 12.0	62.1 ± 8.5	7.3 ± 1.0
end.	27	734-1044	905.3 ± 11.4	59.4 ± 8.1	6.6 ± 0.9
Sex L, top	27	741-1079	931.3 ± 13.1	68.0 ± 9.3	7.3 ± 1.0
end.	27	776-1138	975.3 ± 13.3	69.2 ± 9.4	7.1 ± 1.0
Kidney R, top	27	782-1149	990.8 ± 12.9	67.2 ± 9.2	6.8 ± 0.9
end.	27	858-1273	1090.9 ± 15.4	80.0 ± 10.9	7.3 ± 1.0
Kidney L, top.	27	833-1248	1056.0 ± 14.9	77.4 ± 10.5	7.3 ± 1.0
end.	27	917-1331.	1150.1 ± 15.6	81.0 ± 11.0	7.1 ± 1.0

COLUBER RADIATUS

Fig. 3. Topographical pattern of the internal organs in males and females of Coluber radiatus.
in the females. For the other organs the range of V is from 10 to 17 .

For the intervals the difference seems to be somewhat more marked, the values of V being greater in the female series. However, the small number of females influences the value of σ. Furthermore, the quotient $\mathrm{D} / \sigma_{\mathrm{D}}$ is never higher than 2.5. This figure is found for the variability of C_{3} (the distance from the left kidney to the cloaca) in both sexes.
correlations: The length of tail has already been discussed above (Table 4). The coefficient of correlation is of the same value in the two sexes. Supporting figures are given in Table 12, both for the symbol r and for its transposition in Z .

The correlation between the length of the body and the weight of the animals seems to be low in the male group. The average weight is of nearly the same value in both sexes. There

TABLE 8
Coluber radiatus, $\%$ Adults ($>950 \mathrm{~mm}$.), TOPOGRAPHY

	N	R	$\mathrm{M} \pm \sigma_{\mathrm{m}}$	$\sigma \pm \sigma \sigma$	$\mathrm{V} \pm \sigma_{\mathrm{V}}$
Body.	16	989-1325	1175.3 ± 29.0	116.0 ± 20.6	8.4 ± 1.5
Tail.	13	247-308	280.4 ± 5.0	17.9 ± 3.5	6.4 ± 1.2
Heart, top	9	195-269	229.5 ± 8.6	28.7 ± 6.8	12.5 ± 2.9
end.	9	221-304	263.9 ± 11.5	34.6 ± 8.2	13.1 ± 3.1
Liver, top.	9	265-390	324.7 ± 15.0	45.0 ± 10.6	13.8 ± 3.3
end.	9	453-653	554.5 ± 23.3	70.0 ± 16.5	12.6 ± 3.0
Gallbladder, top.	9	570-765	673.2 ± 25.8	77.1 ± 18.2	11.5 ± 2.7
end.	9	596-798	697.7 ± 26.5	79.6 ± 18.8	11.4 ± 2.7
Pancreas, top	9	588-798	695.3 ± 26.6	79.6土18.8	11.5 ± 2.7
end.	9	602-816	711.5 ± 27.0	81.4 ± 19.2	11.4 ± 2.7
Spleen, top	9	584-790	689.2 ± 26.4	79.0 ± 18.6	11.5 ± 2.7
end.	9	589-798	695.8 ± 26.6	79.6 ± 18.8	11.4 ± 2.7
Ovar. R, top.	9	677-902	784.3 ± 25.4	76.1 ± 18.0	9.7 ± 2.3
end..........	9	738-1023	880.1 ± 33.8	101.5 ± 23.9	11.5 ± 2.7
Ovar. L, top.	9	761-1034	902.2 ± 36.0	108.0 ± 25.4	12.0 ± 2.8
end.	9	808-1121	977.3 ± 40.0	121.0 ± 28.5	12.4 ± 2.9
Kidney R, top.	9	826-1150	1006.4 ± 39.0	117.0 ± 27.6	11.6 ± 2.7
end...........	9	910-1258	1102.2 ± 43.0	129.0 ± 30.4	11.7 ± 2.8
Kidney L, top	9	874-1186	1063.1 ± 38.6	116.0 ± 27.3	10.9 ± 2.6
end............	9	950-1272	1147.2 ± 43.8	131.5 ± 31.0	11.4 ± 2.7

Fig. 4. Relationships between length and weight in males and females.

Fig. 5. Length of gonads as related to body length and sex.

TABLE 9
TOPOGRAPHY OF Coluber radiatus IN ${ }^{\circ} / \mathrm{oo}$ OF THE BODY LENGTH

¢ ADULTS $\mathrm{N}=27$		¢ ADULTS $\mathrm{N}=9$	FEMALES, ING OR I	FOLLOW- S SHIFT
Body length $M=1196$		Body length $M=1200$	Cranially	Caudally
	$\%$	$\%$		
Body length.................................	1000	1000		
Tail*..	245	234		
Heart, top...........	202	191	11	
end...	232	220	12	
length.	30	29		
Liver, top.....................................	287	271	16	
end...	485	462	23	
length......................................	198	192		
Gallbladder, top............................	592	561	31	
end..	616	582	34	
length......................................	24	22		
Pancreas, top................................	614	580	34	
end..	629	593	36	
length.	15	13		
Spleen, top...................................	610	575	35	
end...	616	580	36	
length......................................	6	5		
Sex R, top....................................	704	645	71	
end...	743	733	25	
length......................................	40	89		
Sex L, top.....................................	766	752	23	4
end..	803	815		
length......................................	35	63		
Both....................	74	152		
Kidney R, top..............................	791	840		49
end..	876	919		43
length......................................	85	79		
Kidney L, top...............................	850	886		36
end......	922	955		33
length..	73	69		
Both..	157	149		

[^2]TABLE 10
Coluber radiatus，Adults，LENGTH OF THE ORGANS

	N	R	$\mathrm{M} \pm \sigma_{\mathrm{m}}$	$\sigma \pm \sigma \sigma$	$\mathrm{V} \pm \sigma_{\mathrm{V}}$
Males＞ 950 mm ．					
body．．	38	957－1380	1170.0 ± 15.2	94.0 ± 10.8	8.0 ± 0.9
tail．	28	237－351	287.9 ± 4.7	24.6 ± 3.3	8.5 ± 1.1
heart．	27	30－45	36.0 ± 0.8	4.2 ± 0.6	11.7 ± 1.6
liver	27	185－291	236.8 ± 3.9	20.2 ± 2.7	8.5 ± 1.2
gallbladder	27	22－42	29.4 ± 1.0	5.2 ± 0.7	17.6 ± 2.4
pancreas	27	12－27	18.9 ± 0.6	3.3 ± 0.4	17.5 ± 2.4
spleen．	27	4－12	6.9 ± 0.4	2.3 ± 0.3	33.0 ± 4.5
sex R	27	41－61	47.7 ± 1.1	6.1 ± 0.8	12.7 ± 1.7
sex L	27	30－59	41.2 ± 1.4	6.6 ± 0.9	16.0 ± 2.2
sex both．	27	76－110	88.8 ± 2.3	11.0 ± 1.5	12.4 ± 1.7
kidney R	27	76－134	105.7 ± 2.9	14.9 ± 2.0	14.1 ± 1.9
kidney L．	27	64－112．	89.8 ± 2.0	10.4 ± 1.4	11.7 ± 1.6
both kidneys．	27	150－232	197.0 ± 1.2	20.2 ± 2.7	10.2 ± 1.4
Females $>959 \mathrm{~mm}$ ．					
body．．	16	989－1352	1178.5 ± 29.0	116.0 ± 20.5	8.4 ± 1.5
tail．	13	247－308	280.4 ± 5.0	17.9 ± 3.2	6.4 ± 1.3
heart．	9	25－41	34.5 ± 1.7	5.2 ± 1.2	15.1 ± 3.6
liver．	9	184－287	230.7 ± 11.3	33.1 ± 7.8	14.3 ± 3.4
gallbladde	9	19－33	26.5 ± 1.7	5.0 ± 1.2	19.5 ± 4.6
pancreas．	9	12－22	16.2 ± 1.1	3.2 ± 0.8	19.8 ± 4.7
spleen．	9	4－9	6.5 ± 0.6	1.7 ± 0.4	26.2 ± 6.2
ovar．R	9	61－174	106.9 ± 13.2	39.6 ± 9.3	37.0 ± 8.7
ovar．L	9	47－117	75.0 ± 8.2	24.6 ± 5.8	32.8 ± 7.7
ovar．both	9	108－291	182.0 ± 23.4	70.0 ± 16.5	38.6 ± 9.1
kidney R．	9	71－126	95.7 ± 4.9	16.3 ± 3.9	17.0 ± 4.1
kidney L．	9	70－96	83.2 ± 3.0	9.1 ± 2.1	10.9 ± 2.6
both kidneys．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	9	141－216	178.9 ± 7.9	23.8 ± 5.6	13.3 ± 3.1

TABLE 11
Coluber radiatus，Male Adults，Intervals between the Organs

	N	R	$\mathrm{M} \pm \sigma_{\mathrm{m}}$	$\sigma \pm \sigma \sigma$	$\mathrm{V} \pm \sigma_{\mathrm{V}}$
A1 snout－heart	27	199－264	241.2 ± 2.9	14.8 ± 2.0	6.1 ± 0.8
A2 heart－liver．	27	43－87	66.3 ± 2.1	11.0 ± 1.5	16.6 ± 2.5
A3 liver－gallbladder．	27	95－179	$12.7 .3 \pm 3.8$	19.8 ± 2.7	15.5 ± 2.6
A．	27	362－506	435．－+7.5	39．－± 5.3	9．－± 1.2
B1 pancreas－gonad．	27	68－141	101.5 ± 2.7	14．－士1．9	13.9 ± 1.8
B2 gonad R －kidney R ．	26	38－125	85.6 ± 4.2	20.7 ± 2.8	24.2 ± 3.4
B3 kidney R－cloaca．	26	77－120	102.7 ± 2.2	11．－土1．5	10.7 ± 1.5
B．	26	215－333	289.2 ± 4.9	25.0 ± 3.5	8.6 ± 1.2
C1 pancreas－gonad L	27	121－208	182.0 ± 3.5	18．－士2．4	9.9 ± 1.4
C2 gonad L－kidney L	26	48－113	82.6 ± 3.4	17.3 ± 2.4	21.2 ± 2.8
C3 kidney L－cloaca	26	39－59	47.6 ± 1.1	5.4 ± 0.8	11.4 ± 1.6
C．	26	218－366	311.5 ± 5.8	30．－± 4.2	9.6 ± 1.3
$A+B$	26	577－839	724.3 ± 10.8	55．－± 7.6	7．6士1．－
A + C	26	580－872	742.8 ± 12.1	60.9 ± 8.5	8.2 ± 1.1
DR pancreas－kidney R	26	162－284	232.9 ± 4.7	24.7 ± 3.3	10.6 ± 1.5
D ${ }_{\text {L pancreas－kidney }} \mathrm{L}$	26	213－376	305.5 ± 5.5	30.6 ± 4.3	10．－± 1.4

TABLE 12
Coluber radiatus, Female Adults, Intervals between the Organs

	N	R	$\mathrm{M} \pm \sigma_{\mathrm{m}}$	$\sigma \pm \sigma \sigma$	$\mathrm{V} \pm \sigma_{\mathrm{V}}$
A1 snout-heart	9	195-269	229.5 ± 8.6	28.7 ± 6.8	12.5 ± 2.9
A2 heart-liver.	9	36-90	60.8 ± 5.5	16.4 ± 3.9	27. $- \pm 5.6$
A3 liver-gallbladder.	9	60-161	118.4 ± 9.3	27.9 ± 6.6	23.6 ± 5.6
A.	9	302-516	398.7 ± 6.3	18.6 ± 4.4	4.7 ± 1.1
B1 pancreas-ovar.	9	29-86	62.7 ± 5.8	17.7 ± 4.2	28.2 ± 6.6
B2 gonad R-kidney.......................	9	88-166	126.3 ± 8.7	26. $- \pm 6.1$	20.6 ± 4.9
B3 kidney R-cloaca.	9	73-117	73.8 ± 3.6	10.9 ± 2.6	14.8 ± 3.5
B.	9	227-334	28.6 ± 4.1	12.2 ± 2.9	4.3 ± 1.0
C1 pancreas-ovar	9	147-250	190.7 ± 10.8	32.5 ± 2.9	17.1 $\pm 4 .-$
C2 ovar. L-kidney L......................	9	51-118	85.7 ± 6.6	19.9 ± 4.7	23.2 ± 5.5
C3 kidney L--cloaca.	9	39-84	53.-士4.8	13.7 ± 3.2	25.6 ± 6.0
C.	9	255-409	330.2 ± 17.2	45.5 ± 10.7	13.7 ± 3.2
$A+B$	9	534-831	694.7 ± 30.7	29.1 ± 6.8	4.9 ± 1.2
$A+C$	9	592-861	739.-士29.-	27.6 ± 6.5	3.7 ± 0.9
DR pancreas-kidney R	9	215-365	295.- $\pm 14 .-$	41.8 ± 9.9	14.5 ± 3.4
DL pancreas-kidney L...................	9	263-418	$351.3 \pm 16 .-$	48.3 ± 11.4	13.8 ± 3.3

TABLE 13
Coluber radiatus, Correlations

FEmALES					
	N	R	$\mathrm{M} \pm \sigma_{\mathrm{m}}$	σ	V
Body length.	6	1006-1352	1200.3 ± 64.0	143.0	11.9
Tail length...	6	247-308	280.0 ± 10.2	22.9	8.2
		$\mathrm{r}=0.750$	$\mathrm{Z}=0.96 \pm 0.58$		
Body length	8	989-1352	1216 ± 55.6	148.-	12.2
Weight.....	8	118-658	426 ± 78	206.-	48.5
		$\mathrm{u}=0.810$	$\mathrm{Z}=1.14 \pm 0.45$		
Body length.	9	989-1352	1200.0 ± 51.0	144.-	12.0
Gonads..	9	108-291	182.0 ± 22.8	64.5	35.4
		$\mathrm{r}=0.740$	$\mathrm{Z}=0.95 \pm 0.41$		
Body length.	9	989-1352	1200.0 ± 51.0	144.0	12.0
Kidneys......	9	$141-216$	179.0 ± 8.8	24.8	13.9
		$\mathrm{r}=0.750$	$Z=0.96 \pm 0.41$		
MALES					
Body length.	29	957-1285	1158.7 ± 18.1	97.6 ± 12.8	8.4 ± 1.1
Tail length...	29	237-350	287.4 ± 4.6	24.7 ± 3.2	8.6 ± 1.1
		$\mathrm{r}=0.760$	$\mathrm{Z}=1.00 \pm 0.20$		
Body length.	22	1061-1380	1210.6 ± 15.5	72.8 ± 11.0	6.0 ± 0.9
Weight.....	22	217-635	477.8 ± 21.7	101.7 ± 15.3	21.2 ± 3.2
		$r=0.508$	$Z=0.57 \pm 0.23$		
Body length.	27	957-1380	1192.2 ± 15.4	80.0 ± 10.9	6.7 ± 0.9
Gonads..	27	76-110	88.8 ± 1.9	9.9 ± 1.4	11.1 ± 1.5
		$\mathrm{r}=0.410$	$\mathrm{Z}=0.44 \pm 0.20$		
Body length.	29	957-1380	1201.0 ± 18.3	93.1 ± 12.9	7.6 ± 1.0
Kidneys..	26	$150-232$	$\begin{gathered} 196.5 \pm 4.1 \\ \mathrm{Z}=1.06 \pm 0.28 \end{gathered}$	20.8 ± 2.9	10.6 ± 1.5

Fig. 6. Length of kidneys as related to body length and sex.
is no sexual dimorphism in this respect.
The coefficient of variation for the length of the gonads is much higher in the small group of females than in the male group; the coefficient of correlation r is lower in the latter.

For the length of the body and that of the kidneys, the values of the coefficients of correlation r are of the same order for both sexes.

Coluber melanurus

Coluber melanurus appears to be widespread (de Rooy, 1916). However, in the vicinity of Surabaia and Djakarta on the north coast of Java this snake is very seldom found: we collected only four of these animals, three males, ine female.
Melanurus means "with a black tail." In our specimens not only the black tail is very conspicuous, but the black markings on the sides in the cranial half of the body and the black
streaks behind the eye cannot be overlooked.
The maximum size, according to de Rooy, is $1400+400 \mathrm{~mm}$. Smith gives $1200+360$ mm . for a male (Elaphe flavolineata). Our specimens are much smaller: they range from 387 to 481 mm . in body length. This would suggest that they are young animals. The female is the shorter one. However, the number of observations is too small to be of any use when the question is put whether or not there is a sexual dimorphism in body length. The length of the tail (in $\%$ of the body length) is 242-242-269 in our male animals, and in our female specimen it is 238 . So there does not seem to be a sexual dimorphism in this character.

In one of the males, (400 mm . in length), a worm was protruding through the skin, about at the level of the top of the right testis.

TOPOGRAPHY: The measurements and their values (expressed in permillage of the length of the body) are given in Table 14.

In our young female the heart and the liver are placed somewhat more caudally than in the males, which is an unusual though not wholly improbable situation. Another exceptional measurement is that the top of the right kidney is also placed more cranially in this female than in the males. Table 14 shows the relevant figures in brackets. Perhaps an error in recording the data has been made here. Indeed, one would expect the top of the right kidneys in a female animal to be placed a little caudally from the same spot in the male, or perhaps at the same level, but hardly more cranially. Furthermore, as the figures are studied, the length of the right

COLUBER MELANURUS

Fig. 7. Topographical pattern of the internal organs in males and a female of Coluber melanurus.
kidney seems to be rather long in this female55 mm .-whereas one would expect it to be about 93% of the body length, or about 36 mm . If the kidney had really been so much longer than usual, I would certainly have added a memorandum to that effect. If we accept the smaller figure (36 mm .) for the end of the kidney as the correct one, because we find it to correspond with the expected value, this correction would place the top at 331 mm . from
the snout instead of at 313 , as was recorded. This is probably to be explained as a simple transposition of the figures. Unfortunately the material is no longer available and cannot be checked.
length of the organs: The only difference found between the sexes is the length of the kidneys, and as explained, this is probably a mistake. If we accept the rectification, the length of both kidneys in the female is 64 mm . or, in

TABLE 14
Coluber melanurus

TABLE 15
Coluber melanurus, SHields

SEX	VENTRALS	SUB- CAUDALS	ROWS
\% Djak.	228	88	19-19-17
de Rooy.	193-234	89-115	19
Smith.	193-234	85-115	19-19-17
¢ Djak.	226	86	19-19-17

$\%$ of the body length, 165 exactly as in the males.

There is little or no asymmetry in the length of the right and left testes, but in males the right kidney is about one-fourth longer than the left one.

Intervals: The interval between the pancreas and the left kidney is 234% of the body length in the male animals, 248% in the female.

LUNG: In these two young animals there is no difference in the topography of the lung: in the male the apex is at 270%, in the female at 276%; the end of the trabecular part of the lung is at 384%, resp 380% of the body length. In the female only, the end has
been noted rather far to the caudal end of the body (896%).
shields: In one male and in the female the number of shields is counted: the figures are given in Table 15. There is no difference between the sexes.

REFERENCES

Heurn, W. C. van. 1929. Coluber radiatus, de tjaoe asak. Trop. Natuur. Pp. 128-130.
Kopstein, F. 1941. Sexual Dimorphismus bei Malaiischen Schlangen. Temminckia 6.
RadSma, W. 1948. Inleiding tot de physiologische chemie. J. B. Wolters ed. GroningenBatavia. Pp. 152.
Rooy, N. De. 1916. Catalogue of the reptiles of the Indo-Australian archipelago. Leiden. Vol. II, Brill ed.
Simpson, G. G., and A. Roe. 1939. Quantitative Zoology. McGraw Hill Co., New York.
Smith, M. H. 1943. The Fauna of British India, Ceylon and Burma. London. Vol. 3: Serpentes.
Schlegel. 1837. Phys. Serpent. Pp. 135.

[^0]: ${ }^{1}$ Royal Tropical Institute, Amsterdam. Manuscript received June 8, 1959.

[^1]: * The figures for the length of the tail in parentheses do not refer to the animal whose body length is given.

[^2]: * Data from the table of correlations.

